# Dualities in dense baryonic (quark) matter with chiral and isospin imbalance

Roman N. Zhokhov

#### IHEP, IZMIRAN

Lattice and Functional Techniques for Exploration of Phase Structure and Transport Properties in Quantum Chromodynamics, Dubna

September 5, 2018

(ロ) (型) (E) (E) (E) (O)



#### small group

T.G. Khunjua, MSU and K.G. Klimenko, IHEP broad group

V. Ch. Zhukovsky, Moscow state University and D. Ebert, Humboldt University of Berlin

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# QCD at finite temperature and nonzero chemical potential

QCD at nonzero temperature and baryon chemical potential plays a fundamental role in many different physical systems. (QCD at extreme conditions)

- neutron stars
- heavy ion collision experiments
- Early Universe



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

# Methods of dealing with QCD

Methods of dealing with QCD

- First principle calcaltion lattice Monte Carlo simulations, LQCD
- Effective models

Nambu-Jona-Lasinio model NJL

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

lattice QCD at non-zero baryon chemical potential  $\mu_B$ 

# Lattice QCD non-zero baryon chemical potential $\mu_B$ sign problem — complex determinant

$$(Det(D(\mu)))^{\dagger} = Det(D(-\mu^{\dagger}))$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# (3+1)-dimensional NJL model

NJL model can be considered as effective field theory for QCD.

the model is **nonrenormalizable** Valid up to  $E < \Lambda \approx 1$  GeV

Parameters G,  $\Lambda$ ,  $m_0$ 

chiral limit  $m_0 = 0$ 

in many cases chiral limit is a very good approximation

dof– quarks no gluons only four-fermion interaction attractive feature — dynamical CSB the main drawback – lack of confinement (PNJL)

Relative simplicity allow to consider hot and dense QCD in the framework of NJL model and explore the QCD phase structure (diagram).

# chiral symmetry breaking

Unlike the QED , the QCD vacuum has non-trivial structure due to non-perturbative interactions among quarks and gluons

GOR relation and lattice simulations  $\Rightarrow$  condensation of quark and anti-quark pairs

$$\langle \bar{q}q \rangle \neq 0, \quad \langle \bar{u}u \rangle = \langle \bar{d}d \rangle \approx (-250 MeV)^3$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

### Nambu-Jona-Lasinio model

Nambu–Jona-Lasinio model

$$egin{aligned} \mathcal{L} &= ar{q} \gamma^{
u} \mathrm{i} \partial_{
u} q + rac{G}{N_c} \Big[ (ar{q} q)^2 + (ar{q} \mathrm{i} \gamma^5 q)^2 \Big] \ & q 
ightarrow e^{i \gamma_5 lpha} q \end{aligned}$$

continuous symmetry

$$\begin{split} \widetilde{\mathcal{L}} &= \overline{q} \Big[ \gamma^{\rho} i \partial_{\rho} - \sigma - i \gamma^{5} \pi \Big] q - \frac{N_{c}}{4G} \Big[ \sigma^{2} + \pi^{2} \Big]. \\ & \text{Chiral symmetry breaking} \\ 1/N_{c} \text{ expansion, leading order} \\ & \langle \overline{q}q \rangle \neq 0 \\ & \langle \sigma \rangle \neq 0 \quad \longrightarrow \quad \widetilde{\mathcal{L}} = \overline{q} \Big[ \gamma^{\rho} i \partial_{\rho} - \langle \sigma \rangle \Big] q \end{split}$$

▲ 臣 ▶ 臣 • • • • •

# Different types of chemical potentials: dense matter with isotopic imbalance

#### Baryon chemical potential $\mu_B$

Allow to consider systems with non-zero baryon densities.

The corresponding term in the Lagrangian is

 $\frac{\mu_B}{3}ar{q}\gamma^0 q = \muar{q}\gamma^0 q$ , where  $\mu$  -quark chemical potential

#### Isotopic chemical potential $\mu_I$

Allow to consider systems with isotopic imbalance.

$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

The corresponding term in the Lagrangian is  $\frac{\mu_l}{2} \bar{q} \gamma^0 \tau_3 q$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

## QCD phase diagram with isotopic imbalance

neutron stars, heavy ion collisions have isotopic imbalance



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Different types of chemical potentials: chiral imbalance

#### chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is

$$\mu_5 \bar{q} \gamma^0 \gamma^5 q$$

ション ふゆ アメリア メリア しょうくの

Different types of chemical potentials: chiral imbalance

chiral (axial) isotopic chemical potential

Allow to consider systems with chiral isospin imbalance

 $\mu_{I5} = \mu_{u5} - \mu_{d5}$ 

so the corresponding density is

 $n_{15} = n_{u5} - n_{d5}$ 

 $n_{I5} \leftrightarrow \mu_{I5}$ 

Term in the Lagrangian —  $\frac{\mu_{I5}}{2}\bar{q}\tau_3\gamma^0\gamma^5q$ 

If one has all four chemical potential, one can consider different densities  $n_{uL}$ ,  $n_{dL}$ ,  $n_{uR}$  and  $n_{dR}$ 

## Chiral magnetic effect



$$\vec{J} = c\mu_5 \vec{B}, \qquad c = \frac{e^2}{2\pi^2}$$

2

A. Vilenkin, PhysRevD.22.3080,

K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D **78** (2008) 074033 [arXiv:0808.3382 [hep-ph]].

# Chiral separation effect

#### Chiral imbalance could appear in compact stars



$$\vec{J}_5 = c\mu \vec{B}, \qquad c = rac{e^2}{2\pi^2}$$

there is current and there is  $n_5$ 

(ロ)、(部)、(E)、(E)、 E

#### Model and its Lagrangian

We consider a NJL model, which describes dense quark matter with two massless quark flavors (*u* and *d* quarks).

$$\begin{split} \mathcal{L} &= \bar{q} \Big[ \gamma^{\nu} \mathrm{i} \partial_{\nu} + \frac{\mu_B}{3} \gamma^0 + \frac{\mu_I}{2} \tau_3 \gamma^0 + \frac{\mu_{I5}}{2} \tau_3 \gamma^0 \gamma^5 + \mu_5 \gamma^0 \gamma^5 \Big] q + \\ & \frac{G}{N_c} \Big[ (\bar{q}q)^2 + (\bar{q} \mathrm{i} \gamma^5 \vec{\tau} q)^2 \Big] \end{split}$$

ション ふゆ アメリア メリア しょうくの

q is the flavor doublet,  $q = (q_u, q_d)^T$ , where  $q_u$  and  $q_d$  are four-component Dirac spinors as well as color  $N_c$ -plets;  $\tau_k$  (k = 1, 2, 3) are Pauli matrices.

#### quark masses, chiral limit

light quarks u, d

$$m_u = 0.005 \text{ GeV}, \quad m_d = 0.009 \text{ GeV}$$

chiral limit  $m_u = m_d = 0$ 

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

#### Equivalent Lagrangian

To find the thermodynamic potential we use a semi-bosonized version of the Lagrangian

$$\widetilde{L} = \bar{q} \Big[ \gamma^{\rho} i \partial_{\rho} + \mu \gamma^{0} + \nu \tau_{3} \gamma^{0} + \nu_{5} \tau_{3} \gamma^{1} - \sigma - i \gamma^{5} \pi_{a} \tau_{a} \Big] q - \frac{N_{c}}{4G} \Big[ \sigma \sigma + \pi_{a} \pi_{a} \Big].$$

$$\sigma(x) = -2rac{G}{N_c}(ar{q}q); \quad \pi_a(x) = -2rac{G}{N_c}(ar{q}\mathrm{i}\gamma^5 au_aq).$$

Condansates ansatz  $\langle \sigma(x) \rangle$  and  $\langle \pi_a(x) \rangle$  do not depend on spacetime coordinates x,

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \Delta, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0.$$
 (1)

ション ふゆ アメリア メリア しょうくの

where M and  $\Delta$  are already constant quantities.

#### thermodynamic potential

the thermodynamic potential can be obtained in the large  $N_c$  limit

 $\Omega(M, \Delta)$ 

Projections of the TDP on the M and  $\Delta$  axes

No mixed phase  $(M \neq 0, \Delta \neq 0)$ 

it is enough to study the projections of the TDP on the M and  $\Delta$ 

projection of the TDP on the *M* axis  $F_1(M) \equiv \Omega(M, \Delta = 0)$ 

projection of the TDP on the  $\Delta$  axis  $F_2(\Delta) \equiv \Omega(M = 0, \Delta)$ 

#### Dualities

#### The TDP (phase daigram) is invariant

Interchange of condensates

matter content

 $\Omega(\mathit{C}_1, \mathit{C}_2, \mu_1, \mu_2)$ 

 $\Omega(C_1, C_2, \mu_1, \mu_2) = \Omega(C_2, C_1, \mu_2, \mu_1)$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### Dualities of the TDP

The TDP is invariant with respect to the so-called duality transformations (dualities) 1) The main duality

 $\mathcal{D}: M \longleftrightarrow \Delta, \quad \nu \longleftrightarrow \nu_5$ 

 $\nu \longleftrightarrow \nu_5 \text{ and } \mathsf{PC} \longleftrightarrow \mathsf{CSB}$ 

#### 2) Duality in the CSB phenomenon

 $F_1(M)$  is invariant under  $\mathcal{D}_M$  :  $\nu_5 \leftrightarrow \mu_5$ 

#### 3) Duality in the PC phenomenon

 $F_2(\Delta)$  is invariant under  $\mathcal{D}_{\Delta}$  :  $\nu \leftrightarrow \mu_5$ 

PC phenomenon breaks  $\mathcal{D}_M$  and CSB phenomenon  $\mathcal{D}_\Delta$  duality

# Dualities in different approaches

- Similar dualities between chiral and superconducting condensates in low dimensional models due to Pauli Gursey, D. Ebert, T.G. Khunjua, K.G. Klimenko, V.Ch. Zhukovsky, Phys. Rev. D 90, 045021 (2014), Phys. Rev. D 93, 105022 (2016)
- Large N<sub>c</sub> orbifold equivalences connect gauge theories with different gauge groups and matter content in the large N<sub>c</sub> limit.

M. Hanada and N. Yamamoto, JHEP 1202 (2012) 138, arXiv:1103.5480 [hep-ph], PoS LATTICE **2011** (2011), arXiv:1111.3391 [hep-lat] two gauge theories with  $G_1$  and  $G_2$  with  $\mu_1$  and  $\mu_2$ Duality  $G_1 \leftrightarrow G_2$ ,  $\mu_1 \leftrightarrow \mu_2$  $G_1$  is sign problem free  $G_2$  has sign problem, can not be studied on lattice

#### Dualities in large $N_c$ orbifold equivalences

two gauge theories with gauge groups  $\mathcal{G}_1$  and  $\mathcal{G}_2$  with  $\mu_1$  and  $\mu_2$ 

 $\begin{array}{c} \mathsf{Duality}\\ \mathsf{G}_1 \longleftrightarrow \mathsf{G}_2, \ \mu_1 \longleftrightarrow \mu_2 \end{array}$ 

 $G_2$  is sign problem free

 $G_1$  has sign problem, can not be studied on lattice

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### Dualities in large N<sub>c</sub> limit of NJL model

#### $\Omega(C_1, C_2, \mu_1, \mu_2)$

Duality  $C_1 \longleftrightarrow C_2,$  $\mu_1 \longleftrightarrow \mu_2$ 

QCD with  $\mu_1$  —- sign problem free, and with  $\mu_2$  has sign problem, can not be studied on lattice

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### Pion condensation history

#### Phase structure of the (3+1) dim NJL model

In the early 1970s Migdal suggested the possibility of pion condensation in a nuclear medium A.B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2210 (1971) [Sov. Phys. JETP 36, 1052 (1973)]; A. B. Migdal, E. E. Saperstein, M. A. Troitsky and D. N. Voskresensky, Phys. Rept. 192, 179 (1990). R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972);

From the results of the experiments concerning the repulsive  $\pi N$  interaction pion condensation is highly unlikely to be realized in nature A. Ohnishi D. Jido T. Sekihara, and K. Tsubakihara .

## Very brief history and motivation

There has been a lot of activity in this area **pion condensation** in NJL<sub>4</sub> K. G. Klimenko, D. Ebert J.Phys. G32 (2006) 599-608 arXiv:hep-ph/0507007 K. G. Klimenko, D. Ebert Eur.Phys.J.C46:771-776,(2006) arXiv:hep-ph/0510222 also in (1+1)- dimensional case, NJL<sub>2</sub> K. G. Klimenko, D. Ebert, PhysRevD.80.125013 arXiv:0902.1861 [hep-ph]

pion condensation in dense matter predicted without certainty

physical quark mass – no pion condensation in dense medium H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, M. Ruggieri Phys.Rev.D79:034032,2009 arXiv:0809.2658 [hep-ph] Phase structure of (3+1)-dim NJL model

#### Phase structure of the (3+1) dim NJL model

Chiral isospin chemical potential  $\mu_{l5}$  generates charged pion condensation in the dense quark matter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# $(\nu, \nu_5)$ phase portrait of NJL<sub>4</sub>

Duality between chiral symmetry breaking and pion condensation

 $\mathcal{D}: M \longleftrightarrow \Delta, \quad \nu \longleftrightarrow \nu_5$ 

 $\mathsf{PC} \longleftrightarrow \mathsf{CSB} \ \nu \longleftrightarrow \nu_5$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Consideration of the case with  $\mu_B$ ,  $\mu_I$ ,  $\mu_{I5}$  and  $\mu_5$  chemical potentials in (3+1)-dimensional NJL model

$$(\mu_B, \mu_I, \mu_{I5}, \mu_5),$$
  
 $(\nu_5 = \frac{\mu_{I5}}{2}, \nu = \frac{\mu_I}{2})$ 

Up to now ( $\mu_B$ ,  $\mu_I$ ,  $\mu_{I5}$ ) was considered ( $\mu_{I5} \neq 0$  and  $\mu_5 = 0$ )

Now let us consider  $\mu_5$  instead of  $\mu_{I5}$  ( $\mu_5 \neq 0$ ,  $\mu_{I5} = 0$ )

$$(\mu_B, \mu_I, \mu_{I5}) \longrightarrow (\mu_B, \mu_I, \mu_5)$$

ション ふゆ アメリア メリア しょうくの

How chiral imbalance in the form of chiral  $\mu_5$  chemical potential influence PC condensation

# Chiral imbalance in the form of $\mu_5$ chemical potential. ( $u, \mu_5$ ) phase diagram



Figure:  $(\nu, \mu_5)$  phase diagram at  $\mu = 0.23$  GeV.

Chiral chemical potential  $\mu_5$  generates charged pion condensation in the dense quark matter as well.

$$\mu_{\rm 5} 
ightarrow {\rm PC_d}$$

-Not so prominently as  $\mu_{I5}$  does

-But only at comparatively low densities  $n_q$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

### Duality in the PC phenomenon

Duality in the PC phenomenon

PC phenomenon  $(F_2(\Delta))$  is invariant under  $\mathcal{D}_{\Delta}$ 

 $\mathcal{D}_{\Delta}$  :  $\nu \leftrightarrow \mu_5$ 

But CSB does not respect the duality  $\mathcal{D}_\Delta$  so one has to check that CSB is dynamically suppressed in the duality conjugated regions

CSB is dynamically suppressed  $M_0 = 0$ 

## Consideration of the general case $\mu$ , $\mu_I$ , $\mu_{I5}$ and $\mu_5$



Figure:  $(\nu, \nu_5)$  phase diagram at  $\mu_5 = 0.5$  GeV and  $\mu = 0.3$  GeV.

In this case the phase diagram even richer

generation of  $PC_d$  phase is even more widespread

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Comparison with lattice QCD

# Comparison with lattice QCD

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

# Comparison with lattice QCD, finite temperate and physical point

- Before that point we considered the chiral limit

$$m_0 = m_u = m_d = 0$$
  
 $m_0 \neq 0, \quad m_0 \approx 5 \text{ MeV}$ 

- For that let us consider the finite temperature T

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## duality is approximate



Figure:  $(\nu, \nu_5)$  phase diagram

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

 $(
u, 
u_5)$  phase portrait of NJL<sub>4</sub> at  $\mu = 0$ 

The case of  $\mu = 0$  can be considered on lattice



# Comparison with lattice QCD

#### Comparison with lattice QCD

The case of zero baryon chemical potential  $\boldsymbol{\mu}$  can be considered on lattice

#### Two cases have been considered in LQCD

– QCD at non-zero isospin chemical potential  $\mu_I$  has been considered in arXiv:1611.06758 [hep-lat], Phys. Rev. D 97, 054514 (2018) arXiv:1712.08190 [hep-lat] Endrodi, Brandt et al (see B. Brandt talk)

– QCD at non-zero chiral chemical potential  $\mu_5$  has been considered in Phys. Rev. D 93, 034509 (2016) arXiv:1512.05873 [hep-lat] Braguta, ITEP lattice group (see V. Braguta talk)

# QCD at non-zero isospin chemical potential $\mu_I$ : ( $\nu$ , T) phase portrait comparison between NJL model and lattice QCD



Figure:  $(\nu, T)$  phase diagram at  $\mu = 0$  and  $\nu_5 = 0$  GeV

Figure:  $(\nu, T)$  phase diagram arXiv:1611.06758 [hep-lat]

# QCD at non-zero isospin chemical potential $\mu_I$ : ( $\nu$ , T) phase portrait comparison between NJL model and lattice QCD



Figure:  $(\nu, T)$  phase diagram at  $\nu_5 = 0$  GeV from J. Phys. G: Nucl. Part. Phys. 37 015003 (2010) Figure:  $(\nu, T)$  phase diagram at  $\nu_5 = 0$  GeV arXiv:1611.06758 [hep-lat]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

ChPT has similar phase diagram

D.T. Son, M.A. Stephanov Phys.Rev.Lett. 86 (2001) 592-595 arXiv:hep-ph/0005225 Phys.Atom.Nucl.64:834-842,2001; Yad.Fiz.64:899-907,2001 arXiv:hep-ph/0011365

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

## QCD with non-zero chiral chemical potential $\mu_5$

QCD at zero baryon chemical potential  $\mu = 0$  but with non-zero  $\mu_5 \neq 0$  sign problem free

 $\mu_5 \neq 0$  no sign problem

Braguta ITEP lattice, Ilgenfritz Dubna et al SU(2), SU(3) – Catalysis of Dynamical Chiral Symmetry Breaking



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### $\mu_5$ or $u_5$ chemical potential, duality

CSB phenomenon is invariant under

 $\mathcal{D}_M$  :  $\nu_5 \leftrightarrow \mu_5$ 

 $(\mu_5, T)$  and  $(\nu_5, T)$  are the same

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

# QCD at non-zero chiral chemical potential $\mu_5$ , comparison between NJL model and lattice QCD



Figure: critical temperature  $T_c$  as a function of  $\mu_5$  in LQCD, from arXiv:1512.05873 [hep-lat

Figure: critical temperature  $T_c$ as a function of  $\mu_5$  in the framework of NJL model

#### Charge neutrality condition

the general case ( $\mu$ ,  $\mu_I$ ,  $\mu_{I5}$ ,  $\mu_5$ )

consider charge neutrality case  $\rightarrow \nu = \mu_I/2 = \nu(\mu, \nu_5, \mu_5)$ 

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

#### Charge neutrality condition

-pion condensation in dense matter predicted without certainty, at  $\nu$  there is a small region of PC<sub>d</sub> phase K. G. Klimenko, D. Ebert J.Phys. G32 (2006) 599-608 arXiv:hep-ph/0507007

-physical quark mass and electric neutrality - no pion condensation in dense medium H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, M. Ruggieri Phys.Rev.D79:034032,2009 arXiv:0809.2658 [hep-ph]

-Chiral isospin chemical potential  $\mu_{I5}$  generates PC<sub>d</sub>

-can this generation happen in the case of neutrality condition

#### Charge neutrality condition

It can be shown that the  $PC_d$  phase can be generated by chiral imbalance in the case of charge neutrality condition 25pt

non-zero  $\mu_5 
ightarrow {\sf PC}_d$  phase in neutral quark matter

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(1+1)-dimensional Gross-Neveu (GN) or NJL model consideration

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

# (1+1)- dimensional GN, NJL model

(1+1)-dimensional Gross-Neveu (GN) or NJL model possesses a lot of common features with QCD

- renormalizability
- asymptotic freedom
- sponteneous chiral symmetry breaking in vacuum
- dimensional transmutation
- have the similar  $\mu_B T$  phase diagrams

#### $\mathsf{NJL}_2$ model

laboratory for the qualitative simulation of specific properties of QCD at arbitrary energies

Phase structure of (1+1)-dim NJL model

#### Phase structure of the (1+1) dim NJL model

Chiral isospin chemical potential  $\mu_{I5}$  generates charged pion condensation in the dense quark matter.

Phys. Rev. D 95, 105010 (2017) arXiv:1704.01477 [hep-ph] Phys. Rev. D 94, 116016 (2016) arXiv:1608.07688 [hep-ph]



Figure:  $(u, u, u_{r})$  phase diagram in homogeneous case

Comparison of phase diagram of (3+1)-dim and (1+1)-dim NJL models

# Comparison of phase diagram of (3+1)-dim and (1+1)-dim NJL models

The phase diagrams obtained in two models that are assumed to describe QCD phase diagram are qualitatively the same

ション ふゆ アメリア メリア しょうくの

 $(\mu, 
u)$  phase portraits comparison, NJL<sub>2</sub> and NJL<sub>4</sub>





Figure:  $(\mu, \nu)$  phase diagram in the framework of NJL<sub>2</sub> model at  $\nu_5 = 0$  GeV Figure:  $(\mu, \nu)$  phase diagram in the framework of NJL<sub>4</sub> model at  $\nu_5 = 0.195$  GeV

(日) (四) (日) (日) (日)

#### Conclusions

 $\mu_B \neq 0$  - dense quark matter  $\mu_I \neq 0$  isotopically asymmetric  $\mu_5 \neq 0$  and  $\mu_{I5} \neq 0$  chirally asymmetric

#### CSB and PC in NJL model

Dualities; duality between CSB and PC:  $\nu_5 \leftrightarrow \nu$ 

$$\mu_{I5} \rightarrow \mathsf{PC}_{\mathsf{d}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Both $\mu_{I5}, \mu_5$ : wide PC<sub>d</sub> generation even with neutrality condition

Thanks for the attention

# Thanks for the attention

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ